skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McCulloch, Iain"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Katz, Howard E (Ed.)
    Abstract Doping of organic semiconductors has served as an effective method to achieve high electrical conductivity and large thermoelectric power factor. This is of importance to the development of flexible/wearable electronics and green energy‐harvesting technologies. The doping impact of the Lewis acid tris (pentafluorophenyl) borane (BCF) on the thermoelectric performance of poly(2‐(4,4′‐bis(2‐methoxyethoxy)‐5′‐methyl‐[2,2′‐bithiophen]‐5‐yl)‐5‐methylthieno[3,2‐b]thiophene (pgBTTT), a thiophene‐based polymer featuring oligoethylene glycol side chains is investigated. Tetrafluorotetracyanoquinodimethane (F4TCNQ), a well‐established dopant, is utilized as a comparison; however, its inability to co‐dissolve with pgBTTT in less polar solvents hinders the attainment of higher doping levels. Consequently, a comparative study is performed on the thermoelectric behavior of pgBTTT doped with BCF and F4TCNQ at a very low doping level. Subsequent investigation is carried out with BCF at higher doping levels. Remarkably, at 50 wt% BCF doping level, the highest power factor of 223 ± 4 µW m−1K2is achieved with an electrical conductivity of 2180 ± 360 S cm−1and a Seebeck coefficient of 32 ± 1.3 µV K−1. This findings not only contribute valuable insights to the dopant interactions with oxygenated side chain polymers but also open up new avenues for high conductivity thermoelectric polymers in flexible electronic applications. 
    more » « less
  2. Abstract The sub‐Terahertz and Terahertz bands play a critical role in next‐generation wireless communication and sensing technologies, thanks to the large amount of available bandwidth in this spectral regime. While long‐wavelength (microwave to mm‐Wave) and short‐wavelength (near‐infrared to ultraviolet) devices are well‐established and studied, the sub‐THz to THz regime remains relatively underexplored and underutilized. Traditional approaches used in the aforementioned spectral regions are more difficult to replicate in the THz band, leading to the need for the development of novel devices and structures that can manipulate THz radiation effectively. Herein a novel organic, solid‐state electrochemical device is presented, capable of achieving modulation depths of over 90% from ≈500 nm of a conducting polymer that switches conductivity over a large dynamic range upon application of an electronically controllable external bias. The stability of such devices under long‐term, repeated voltage switching, as well as continuous biasing at a single voltage, is also explored. Switching stabilities and long‐term bias stabilities are achieved over two days for both use cases. Additionally, both depletion mode (always “ON”) and accumulation mode (always “OFF”) operation are demonstrated. These results suggest applications of organic electrochemical THz modulators in large area and flexible implementations. 
    more » « less
  3. Developing efficient and stable organic photovoltaics (OPVs) is crucial for the technology's commercial success. However, combining these key attributes remains challenging. Herein, we incorporate the small molecule 2-((3,6-dibromo-9 H -carbazol-9-yl)ethyl)phosphonic acid (Br-2PACz) between the bulk-heterojunction (BHJ) and a 7 nm-thin layer of MoO 3 in inverted OPVs, and study its effects on the cell performance. We find that the Br-2PACz/MoO 3 hole-extraction layer (HEL) boosts the cell's power conversion efficiency (PCE) from 17.36% to 18.73% (uncertified), making them the most efficient inverted OPVs to date. The factors responsible for this improvement include enhanced charge transport, reduced carrier recombination, and favourable vertical phase separation of donor and acceptor components in the BHJ. The Br-2PACz/MoO 3 -based OPVs exhibit higher operational stability under continuous illumination and thermal annealing (80 °C). The T 80 lifetime of OPVs featuring Br-2PACz/MoO 3 – taken as the time over which the cell's PCE reduces to 80% of its initial value – increases compared to MoO 3 -only cells from 297 to 615 h upon illumination and from 731 to 1064 h upon continuous heating. Elemental analysis of the BHJs reveals the enhanced stability to originate from the partially suppressed diffusion of Mo ions into the BHJ and the favourable distribution of the donor and acceptor components induced by the Br-2PACz. 
    more » « less
  4. Abstract Organic electrochemical transistors are a promising technology for bioelectronic devices, with applications in neuromorphic computing and healthcare. The active component enabling an organic electrochemical transistor is the organic mixed ionic-electronic conductor whose optimization is critical for realizing high-performing devices. In this study, the influence of purity and molecular weight is examined for a p-type polythiophene and an n-type naphthalene diimide-based polymer in improving the performance and safety of organic electrochemical transistors. Our preparative GPC purification reduced the Pd content in the polymers and improved their organic electrochemical transistor mobility by ~60% and 80% for the p- and n-type materials, respectively. These findings demonstrate the paramount importance of removing residual Pd, which was concluded to be more critical than optimization of a polymer’s molecular weight, to improve organic electrochemical transistor performance and that there is readily available improvement in performance and stability of many of the reported organic mixed ionic-electronic conductors. 
    more » « less
  5. Abstract Organic semiconductors enable low‐cost solution processing of optoelectronic devices on flexible substrates. Their use in contemporary applications, however, is sparse due to persistent challenges in achieving the requisite performance levels in a reliable and reproducible manner. A critical bottleneck is the inefficiency associated with charge injection. Here, large‐scale simulations are employed to identify operational windows where key device parameters that are difficult to control experimentally, such as the contact resistance, become less consequential to overall device functionality. This design methodology overcomes injection barrier limitations in organic field‐effect transistors (OFETs), leading to high charge carrier mobility and significantly expanding the range of suitable electrode materials. Leveraging this new understanding, all‐organic, solution‐deposited OFETs are successfully fabricated on flexible substrates. These devices incorporate printed contacts and showcase mobilities exceeding 5 cm2 Vs−1. These results provide a route for accessing the fundamental limits of material properties even in the absence of ideal contacts – a critical step in establishing reliable structure/property relationships and optimal material design paradigms. While reducing the injection barrier and contact resistance remains critical for achieving high OFET performance, this work demonstrates a path toward consistently achieving high charge carrier mobility through device geometry design, ultimately reducing processing complexity and cost. 
    more » « less